
of substance heating have been computed, knowledge of which plays an important part in the analysis of the 
sensitivity of solid HE to mechanical  effects.  
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W A V E  P R O P A G A T I O N  IN A U N I D I R E C T I O N A L  C O M P O S I T E  

AS C O M P A R E D  W I T H  A L A M I N A R  E L A S T I C  S O L I D  

A.  A.  E r m a k  U DC 539.3 

In studying a unidirectional composite,  the assumption is often used that the bonding f ibers experience 
only t e n s i o n - c o m p r e s s i o n ,  and the binder only shear  in a reas  parallel  to the f ibers .  This hypothesis is based 
on purely qualitative considerations,  and it is apparently impossible to give a sufficiently exact a pr ior i  es t i -  
mate of the e r r o r  it induces. Hence, the solution of tes t  problems and a compar ison of the resul ts  obtained 
with the solution for an elast ic laminar  medium are  of interest .  Thepropagat ton of s tat ionary harmonic waves 
along fibers and the normal incidence of a plane s t r ess  wave on a half-space are  examined in this paper  as 
such problems.  When the boundary load is a Heaviside function of the t ime,  the second problem has been con- 
sidered in [1] for  an approximate model.  Analysis of the solution obtained showed that it possesses  all the 
fundamental singulari t ies inherent in even more  complex problems.  At the same t ime,  considerat ion of a 
plane wave is convenient for a numerical  solution since it affords the possibili ty of being limited to the con- 
sideration of just two adjacent l ayers .  

1. Let the composite consist  of parallel  f ibers of thickness h with Young's modulus E and density Pl em-  
bedded in one layer ,  between which the spaces are filled with layers  of a binder of width H and shear  modulus 
G and density P2. We take the specimen thickness as unity, direct  the y axis along the boundary between the 
fibers and the binder,  and the x axis perpendicular ly to the f ibers (Fig. 1). In conformity with the model taken 
for the composite,  the equations of motion of the components in the case when all the fibers move identically 
are  of the form [1] 

a2u 2G av [ __ 1 02t+ 
~- --~- "~-x Ix=o c~ at 2 (1.1) ay2 ,~ 7 

o2v t a2 v 
ax" c,+ a t  2 , v l ~  = v k-=++ = u ,  

2 

where u and v are  the displacements of the f ibers and the binder, respect ively,  along the y axis, t is the t ime, 
e I =,rE/pt ;  c 2 =r The s t r e s ses  are proport ional  to the corresponding s t ra ins  a = E a u / d y ,  +" =Gav/0x.  

Since the composite is an inhomogeneous body, it possess  geometr tc  dispers ion which is manifest for 
harmonic waves as the frequency dependence of the phase velocity. Since the nonstat ionary waves can be r e p r e -  

Novosibirsk. Translated f rom Zhurnal prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 149-153, 
September-October ,  1982. Original ar t ic le  submitted April 15, 1981. 
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sented in the fo rm of a Four ier  integral,  i .e.,  expanded in harmonics ,  then cer tain pre l iminary  qualitative in- 
formation about its proper t ies  as compared to  an elast ic  body can be extracted f rom an analysis  of the dis-  
pers ion curves  of the approximate model .  

We limit ourselves  to a considerat ion of waves being propagated along the f ibers .  Let the composite 
occupy the whole plane and be subjected to harmonic  oscillations 

u(v, t ) -  u~ i~(v - c t ) ,  (1.2) 

where u ~ is the amplitude, c is the phase velocity, and q is the wave number.  The representa t ion (1.2) is equiva- 
lent to a Four ier  t ransformat ion  in y with the pa rame te r  q and in t with the pa rame te r  - q c .  After such a t r a n s -  
formation,  the second of equations (1.1) is t r ans fo rmed  into an ordinary differential  equation with given bound- 
a ry  conditions. By solving it, v can be eliminated f rom the f i rs t  equation and a dispers ion relationship can be 
obtained for the approximate model 

c I -- c 2 202c, z i -- cos (qgc/c2) (1.3) 
c = " qpl h sin (qHc/cz) " 

it can be seen that between every  two of the hyperbolas qe =lr {2K +l)c2/H (k = 0, 1 , 2 , . .  ) is a branch of the graph 
of the function c =c(q), the dispers ion curve e =ok(q), hence this graph has the form displayed in Fig. 2 (solid 
lines). Every  dispers ion curve corresponds  to a cer ta in  mode of oscillations which differ by the distribution 
of the displacement v of the binder along x. The  profile of v is found f rom the second equation in (1.1): 

v ( x ,  g, t) = sin(-~'%)u(v't){sin[_~2c(l_~_)]+sin(~c)}" 

The la t ter  formula descr ibes  standing waves whose length diminishes f o r a  given q a s  the mode number grows.  

It follows f rom (1.3) that the velocity of infinitely short  waves is zero  for  any mode, while the velocity 
of infinitely long waves tends to infinity for all modes except the zeroth.  Letting q tend to zero,  and assuming 
e bounded, we find this velocity for the lowest mode 

c -- ]//Eh/(pxh + p~H). 

The relationship obtained expresses  the evident fact that the effective normal  stiffness of the medium under 
considerat ion is proport ional  to Eh, while the mean density is pih +p2 H ((h +H) -1 is a proportionali ty factor) .  

In the dimensionless variables ~ =qHcl/bc2, ~ = c / c  I, where b = P 2 H / p l h ,  the dispers ion equation (1.3) has 
the form 

(i -- ;2)/~ = 2(1 -- cos (b•215 sin (b• 

Therefore ,  the form and location of the dispers ion curves in a suitable coordinate sys tem depend only on the 
dimensionless pa r ame te r  b. As b grows,  i.e., as the relat ive mass  of the binder grows,  the curves approach 
the coordinate axes.  

Now, let us examine a medium consist ing of alternating harder  and more  pliable elast ic  layers .  For  
convenience la ter ,  we call the hard layers  fiber,  as before,  and the pliable l aye rs  the binder.  

The dispers ion relationship for symmet r i c  waves being propagated paral lel  to the layers  in such a me -  
dium is given in [2, 3]. It contains five independent pa rame te r s .  Again bcan  be selected as one of them, and 
the bonding factor  r = h / O a  +H), the ra t io  between the YoungVs modulus of the fiber and the binder E/E2, and their  
Poisson rat ios  v t and v2, as the res t ,  say.  The dashed lines in Fig. 2 correspond to the two lowest modes for 
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b = 1, r =0~ E / E  2 = 10, Yl =Y2 =0.25 the  curves presented in the figure for the approximate model are  con- 
structed for the same values of the parameters ) .  

The qualitative behavior of the curves is s imi lar  in both cases .  Since the normal  stiffness of the binder 
is taken into account in the exact theory,  the mechanical  sys tem as a whole turns out to be st iffer  also; con- 
sequently, the appropriate  phase velocities for the lowest modes turned out to be higher for  all q including 
small q. This is indeed valid for coo (formula (36) in [3]). Since the case of the plane state of s t r e ss  is con- 

/ 
sidered, the Lame constant k in this formula Should be replaced by ~.*=2~#/(~ +2#). The substantial quantitative 
discrepancy between the solid and dashed Curves is observed only for sufficiently large q, but for waves whose 
length is on the order  of or  less  than the charac te r i s t i c  dimension of the s t ructural  inhomogeneity of the me-  
dium, good agreement  between the approximate model and the exact theory should not even be expected. Let 
us note that the velocity of infinitely short  waves in a laminar  elast ic  body equals the velocity of the shear  
wave in the binder c 2. They Could be propagated at the velocity of Stonely waves (< c 2) but the la t te r  are  ab- 
sent for the selected value of E/E 2 [4]. 

2. Let us turn to th e problem of s t r e ss  wave incidence on a hal f -space.  We star t  with the approximate 
model. Let a s t r e ss  

a = E (i -- e--'tcl A) 8 0 (t), (2.1) 

where 6 0 is the Heaviside Unit function, b e applied to the boundary of a composite occupying the half-space 
y ~ 0  and in a natural state at the initial instant. It is considered that the s t ress  (2.1) is applied only to the 
fibers since the binder c a r r i e s  no normal  load in conformity with the composite model taken (see [1] for more  
details). 

The t ime dependence of ~ in the form (2.1) is taken f rom the following considerat ions.  The approximate 
model being examined is computed by studying�9 the elast ic  field that occurs  during a sudden discontinuity in the 
fibers [5-7]. It is cus tomary  to model this la t te r  by an instantaneous drop in the s t r e s s  to zero  at the point of 
the discontinuity. In a supplementary problem obtained f rom the Original by subtracting the initial field, this 
is equivalent to applying a load in the form of a Heaviside function. For  such boundary conditions, an analytic 
solution (in finite form or in quadratures)  is successful ly  constructed within the f ramework of the approximate 
model.  However, the model should apparently not give resul ts  close to elast ici ty theory  in this case since the 
contribution of the short waves,  which the model  descr ibes  poorly,  to the solution can turn  out to be quite sub- 
stantial.  Moreover ,  it i s  natural to consider the f iber  discontinuity to occur  in a cer ta in  finite t ime,  for  in- 
stance, ~h/c  t. Consequently, the boundary load is selected continuous for  t = 0 and convergent to a constant 
in the t ime ~h /c  t in the tes t  problem under consideration.  

Equations (1.1) with the boundary condition (2.1) and zero  initial conditions were  solved by a f ini te-differ-  
ence method. The difference scheme in the displacements ,  and the relationship of the spacings minimizing the 
numerical  dispers ion were  taken according to the recommendat ions in [8]. The pa ramete r  denoted by At /~  in 
[8] and charac ter iz ing  the accuracy  :of the scheme was assumed to equal 0.05. Since the boundary load is con- 
tinuous, the solution obtained turned out to be pract ical ly  exact.  A specific computation by the difference scheme 
was performed for 0 ~-Y~Y0, where the ordinate of the fictitious boundary Y0 was selected with a computation 
such that the wave would not succeed in reaching it in the t ime interval under consideration,  and the boundary 
conditions on it would be assumed homogeneous.  The domain of the solution was even bounded along x because 
of the periodici ty of the problem. The middle line of the binder l ayer  was taken as the fictitious boundary, and 
symmet ry  conditions were given on it. The s t r e s se s  for the displacements found were  determined by numerical  
differentiation. Results of the computations are presented below in a compar ison with the solution for the e las -  
t ic laminar  medium. 

The problem for  the la t ter  was formulated analogously: It was considered that the s t r e s s  {2.1) was ap- 
plied to all the f ibers while the binder was load- f ree .  The 0lane state of s t ress  was examined. The domain 
of the computation was bounded by the middle lines of the f ibers and the adjacent binder l aye rs  on which sym-  
met ry  conditions were imposed, and by the fictitious boundary y =Y0 with the homogeneous boundary conditions. 
An explicit t h r ee - l aye r  difference scheme for  the solution of two-dimensional  Lam~ equations is obtained by a 
variational method. The second derivatives were  approximated by ordinary central  differences at the f iber 
and binder internal points (i.e., to  the second order) ,  while the difference relat ionships on the boundaries ap-  
proximated the boundary conditions and the condition of rigid contact between the f iber and binder to the f i rs t  
order .  The fiber was covered by a uniform mesh with spacing Ax, where the quantity of points over the half-  
thickness,  including the boundary, was taken equal to six. The t ime spacing At ~ A x / f ' ~  where a t and a 2 
are  the respect ive velocities of the longitudinal and t r ansve r se  waves in the fiber.  The binder was also covered 
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by a uniform mesh,  where Ay was taken the same as in the fiber, while Ax could be varied in such a way as 
b or r changed as to emplace all the necessa ry  a r r ays  in the operational s torage of the electronic computer .  
The computation accuracy  was checked by halving the difference scheme spacings for  small  values of the t ime.  

The distribution averaged with respect  to the f iber  thickness,  of the normal  s t r e ss  for the approximate 
model (solid lines) and the elast ic  body (dashes) along the coordinate y is presented in Fig. 3a-d (t =10, 20, 
30, 40 is, respect ively ,  the t ime r e fe r r ed  to h/a1) for  the same values of the pa ramete r s  as in Fig. 2. Analogous 
graphs are  given in Fig. 4 for other values of some of the pa ramete r s  {a) t =35.4, b =2; b) t =37.5, r =2; c) 
t=60 ,  vt =v 2 =0). It is seen that the resul ts  obtained within the f ramework of both models a re  in good qualitative 
agreement  with each other, even for small  values of the t ime.  A certain lead in the maximum peak of the 
s t ress  in the elast ic  medium as compared to the approximate model is explained by a somewhat lowered phase 
velocity, which the la t ter  yields for long waves .  

For small  y the s t r e ss  is pract ica l ly  stabilized in both cases ,  s tar t ing with a cer tain t ime.  Here the 
approximate model exaggerates  their  value by 10% approximately,  which is close to E2/(E +E2). This is ex- 
plained by the fact that the binder in an elast ic  medium takes on approximately that much of the load. If a 
boundary s t ress  is applied even to the binder, then the graphs for small  y come together  substantially, but 
because of the low wave velocity in the binder this change in the boundary conditions does not at all influence 
their  substantially no ,s ta t ionary  sections.  

Therefore ,  the resul ts  obtained confirm the adequacy of the approximate composite model under con- 
sideration.  

It would be interest ing to compare  the tangential s t r e s se s  also on the boundary of the fiber and the binder, 
computed according to both methods,  however,  this cannot unfortunately be done successful ly  with sufficient 
accuracy .  The fact is that these s t r e s ses  are  small quantities compared to the boundary load, which are  com-  
mensura te  with the e r r o r  of the numerical  computation in this ease.  For  a more  exact calculation of T it is 
necessa ry  to diminish the difference scheme spacings substantially, which is extremely complicated because 
of the l imits  to the electronic computer  operational s torage .  

The author is grateful to A. M. Mikhailov and M. V. Stepanenko for useful discussion.  
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ASYMPTOTIC A N A L Y S I S  OF L O N G I T U D I N A L  

AND B E N D I N G  W A V E S  P R O P A G A T E D  IN  A S Y S T E M  

O F  T W O  P L A T E S  F A S T E N E D  A T  A N  A N G L E  

E .  V.  M i k h a i l o v a  UDC 517.9 : 62~t.07-415 

1. We in t roduce  two coord ina te  s y s t e m s  so  that  in the left  plate  x 1-< 0 while  in the r igh t  x e >0 (Fig. 1). 
The z 1 and z 2 axes a r e  he re  d i r ec t ed  n o r m a l l y  to  the  plate  s u r f a c e s  so  that  the  t w o h a l f - p l a n e s  {z I =0 fo r  xl-<0 
and z 2 =0 fo r  x 2 _>0) would coincide  with t h e i r  neu t ra l  p lanes .  The y axis  is a long the  l ine connect ing the p la tes .  
Let an incident s inusoidal  wave  be p ropaga ted  in the left  p la te .  We examine  the condi t ions  fo r  its pa s sage  
through the boundary .  

The plate  v ibra t ions  a re  d e s c r i b e d  by the fol lowing di f ferent ia l  equat ions  

D(O4w/Ox a -}- 2O4w/Ox2Oy ~ + Oaw/c~y a) -{- phO~w/Ot ~ = 0; (1.1) 

~ ) Eh ( O'u 4 l--v O'u t - { - v  O~v 02u 
1 - -  ~2 2 8y 2 2 OxOv Ot ~ ~ - ~ 7 "  -~ = ph ; (1.2) 

Eh , ( 1 - -  ~ c?~v a2~, i + v O~u ) O~v 
\ 2 Ox 2 ~- ~ + T 0xo------~- = ph-~i-, (1.3) 

where  h is the th ickness  of the p la tes ;  E,  e l a s t i c  modulus ;  v, P o i s s o n  ra t io ;  and D, bending s t i f fness .  

D i sp lacemen t s  v i, v 2 of points  of the plate neu t ra l  p lanes  along the  y axis  dur ing  v ibra t ions  ul, u 2 along 
the xl,  x 2 axes  will  c h a r a c t e r i z e  the wave  in the p lanes  of the p la tes  while the d i s p l a c e m e n t s  wl,  w 2 along the 
zl, x 2 axes ,  r e s p e c t i v e l y ,  a r e  bending waves  [1, 2]. 

Solutions of the p r o b l e m  should sa t i s fy  eight boundary  condit ions on the  h i n g e - s u p p o r t e d  edges 

w = ~ = Ov/Oy = o~w/oy~ = 0 (v -- 0, l) (1.4) 

and eight junc ture  condit ions on a c o m m o n  edge (x =0) 

ui ~ u2cos (p ,-+- w~sin q); (1.5) 

w 1 = --u#in q) Jr w2cos qo; (1.6) 

aw~/Ox~ = ow,/Ox.,; (1.7) 

(;xi ---- ~x2 cos ~0 + Rx~ sin (~; (1.8) 

B x ,  = - - ( l x ~  sin ~o + Bx2 cos ~0; (1.9) 

l]Ixi = Mx. , ;  (1.10) 

vi---- v'2; (1.11) 

TXlY =. TX2y , (1.12) 

w h e r e  V = ~ - a  (a is the angle be tween the p la tes) ,  axi a re  the n o r m a l  s t r e s s e s ,  ~xiy a r e  the s h e a r  s t r e s s e s ,  
Mxi a r e  bending m o m e n t s  r e l a t ive  to  the  x =0 axis ,  Qxi + 0MxiY/0Y (Qxi is the  t r a n s v e r s e  fo rce ,  Mxiy is the 
to rque) ,  i = 1 , 2 .  

2. Let  us f i r s t  cons ide r  the  p a r t i c u l a r  ease  of the  plane p r o b l e m  (/=0o). Then v =0,  the  solut ions  a r e  
independent of the va r i ab le  y and the boundary  condit ions (1.4) drop out.  

The junc tu re  condi t ions  on the c o m m o n  edge have the fol lowing f o r m  in th is  case  
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