of substance heating have been computed, knowledge of which plays an important part in the analysis of the
sengitivity of solid HE to mechanical effects.
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WAVE PROPAGATION IN A UNIDIRECTIONAL COMPOSITE
AS COMPARED WITH A LAMINAR ELASTIC SOLID

A. A. Ermak UDC 539.3

In studying a unidirectional composite, the assumption is often used that the bonding fibers experience
only tension~compression, and the binder only shear in areas parallel to the fibers. This hypothesis isbased
on purely qualitative considerations, and it is apparently impossible to give a sufficiently exact a priori esti-
mate of the error it induces. Hence, the solution of test problems and a comparison of the results obtained
with the solution for an elastic laminar medium are of interest. The propagation of stationary harmonic waves
along fibers and the normal incidence of a plane stress wave on a half-space are examined in this paper as
such problems. When the boundary load is a Heaviside function of the time, the second problem has been con-
sidered in [1] for an approximate model. Analysis of the solution obtained showed that it possesses all the
fundamental singularities inherent in even more complex problems. At the same time, consideration of a
plane wave is convenient for a numerical solution since it affords the possibility of being limited to the con-
sideration of just two adjacent layers.

1. Let the composite consist of parallel fibers of thickness h with Young's modulus E and density py em-
bedded in one layer, between which the spaces are filled with layers of a binder of width H and shear modulus
G and density p,. We take the specimen thickness as unity, direct the y axis along the boundary between the
fibers and the binder, and the x axis perpendicularly to the fibers (Fig. 1). In conformity with the model taken
for the composite, the equations of motion of the components in the case when all the fibers move identically
are of the form [1]

&% 26 av 1 %
2 En TRy .
ﬁy dz =0 01 ot (1 1)
% 1 8%
= et ¥ le=o = V0ot = ,

where u and v are the displacements of the fibers and the binder, respectively, along the y axis, t is the time,
¢; =Y E/py; ¢,=VG/py. The stresses are proportional to the corresponding strains ¢=Edu/dy, 7 =Gov/8x.

Since the composite is an inhomogeneous body, it possess geometric dispersion which is manifest for
harmonic waves as the frequency dependence of the phase velocity. Since the nonstationary waves can be repre-
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sented in the form of a Fourier integral, i.e., expanded in harmonics, then certain preliminary qualitative in-
formation about its properties as comparedto an elastic body can be extracted from an analysis of the dis-
persion curves of the approximate model.

We limit ourselves to a consideration of waves being propagated along the fibers. Let the composite
occupy the whole plane and be subjected to harmonic oscillations

uly, 1) = udeily = e, (1.2)

where u’ is the amplitude, ¢ is the phase velocity, and q is the wave number. The representation (1.2) is equiva-
lent to a Fourier transformation in y with the parameter q and in t with the parameter —qc. After sucha trans-
formation, the second of equations (1.1) is transformed into an ordinary differential equation with given bound-
ary conditions. By solving it, v can be eliminated from the first equation and a dispersion relationship can be
obtained for the approximate model

c.i 2 Zpgc‘2 1 — cos (gHc/c,) (1.3)

¢ gpk  sin(gHele))

It can be seen that between every two of the hyperbolas gec=n 2K +1)¢,/H k=0, 1,2,...) is a branch of thegraph
of the function ¢ =c (), the dispersion curve ¢ =cy (), hénce this graph has the form displayed in Fig. 2 (solid
lines). Every dispersion curve corresponds to a certain mode of oscillations which differ by the distribution
of the displacement v of the binder along x. The profile of v is found from the second equation in (1.1):
_ul(y, ) . T gHe z . fexc
0= 58ty 1= 2]

i

The latter formula describes standing waves whose length diminishes fora given qas the mode number grows.

E follows from (1.3) that the velocity of infinitely short waves is zero for any mode, while the velocity
of infinitely long waves tends to infinity for all modes except the zeroth. Letting q tend to zero, and assuming
¢ bounded, we find this velocity for the lowest mode

¢ = VER](ph - p,H).

The relationship obtained expresses the evident fact that the effective normal stiffness of the medium under
consideration is proportional to Eh, while the mean density is psh +p,H (h +H)"! is a proportionality factor).

In the dimensionless variables w =qHc;/bey, £ =c/cy, where b=p,H/p;h, the dispersion equation (1.3) has
the form

(1 — I3/t = 204 — cos (BXL)/(x sin (bxL)).

Therefore, the form and location of the dispersion curves in a suitable coordinate system depend only on the
dimensiounless parameter b. As b grows, i.e., as the relative mass of the binder grows, the curves approach
the coordinate axes. ‘

Now, let us examine a medium consisting of alternating harder and more pliable elastic layers. For
convenience later, we call the hard layers fiber, as before, and the pliable layers the binder.

The dispersion relationship for symmetric waves being propagated parallel to the layers in such a me-
dium is given in [2, 3]. I contains five independent parameters. Again becan be selected as one of them, and
the bonding factor ¥ =h/( +H), the ratio between the Young's modulus of the fiber and the binder E/E,, and their
Poisson ratios »; and v,, as the rest, say. The dashed lines in Fig. 2 correspond to the two lowest modes for



b=1, $=0.5, E/E, =10, vy =¥, =0.25 the curves presented in the figure for the approximate model are con-
structed for the same values of the parameters).

The qualitative behavior of the curves is similar in both cases. Since the normal stiffness of the binder
is taken into account in the exact theory, the mechanical system as a whole turns out to be stiifer also; con-
sequently, the appropriate phase velocities for the lowest modes turned out to be higher for all g mcludlng
small q. This is indeed valid for cw (formula (36) in [3]). Since the case of the plane state of stress is con-
sidered, the Lamé constant A in this formula should be replaced by A*=2xu/(\ +2u). The substantial quantitative
discrepancy between the solid and dashed curves is observed only for sufficiently large q, but for waves whose
length is on the order of or less than the characterlstlc dimension of the structural inhomogeneity of the me-
dium, good agreement between_ the approximate model and the exact theory should not even be expected. Iet
us note that the velocity of infinitely short waves in a laminar elastic body equals the velocity of the shear
wave in the binder ¢,. They could be propagated at the velocity of Stonely waves 02) but the latter are ab~-
sent for the selected value of E/E, [4].

2. Let us turn to the problem of stress wave incidence on a half~space. We start with the approximate
model. Let a stress

a~—E(1 e~Ha/M) 8, (1), 2.1)

where §; is the HeaVlSlde unit function, be applled to the boundary of a composite occupying the half-space
y=0 and in a natural state at the initial instant. ¥ is considered that the stress (2.1) is applied only to the
fibers since the binder carries no normal load in conformlty with the composite model taken (see [1] for more
details). '

The time dependence of ¢ in the form (2.1) is taken from the following considerations. The approximate
model being examined is computed by studymg the elasti¢ field that occurs during a sudden discontinuity in the
fibers [5-7]. & is customary to model this latter by an instantaneous drop in the stress to zero at the point of
the discontinuity, In a supplementary problem obtained from the original by subtracting the initial field, this
is equivalent to applying a load in the form of a Heaviside function. For such boundary conditions, an analytic
solution (in finite form or in quadratures) is successfully constructed within the framework of the approximate
model. However, the model should apparently not give results close to elasticity theory in this case since the
contribution of the short waves, which the model describes poorly, to the solution can turn out to be quite sub-
stantial. Moreover, it is natural to consider the fiber discontinuity to occur in a certain finite time, for in-
stance, ~h/c;. Consequently, the boundary load is selected continuous for t =0 and convergent to a constant
in the time ~h/c, in the test problem under consideration.

Equations (1.1) with the boundary condition (2.1) and zero initial conditions were solved by a finite-differ-
ence method. The difference scheme in the displacements, and the relationship of the spacings minimizing the
numerical dispersion were taken according to the recommendations in [8]. The parameter denoted by At/« in
[8] and characterizing the accuracy of the scheme was assumed to equal 0.05. Since the boundary load is con-
tinuous, the solution obtained turned out to be practically exact. A specific computation by the difference scheme
was performed for 0 <y =y,, where the ordinate of the fictitious boundary y, was selected with a computation
such that the wave would not succeed in reaching.it in the time interval under consideration, and the boundary
conditions on it would be assumed homogeneous, The domain of the solution was even bounded along x because
of the periodicity of the problem. The middle line of the binder layer was taken as the fictitious boundary, and
symmetry conditions were given on it. The stresses for the displacements found were determined by numerical
differentiation. Results of the computatlons are presented below in a comparison with the solution for the elas-
tic laminar medium. '

The problem for the latter was formulated analogously: 1t was considered that the stress (2.1) was ap-
plied to all the fibers while the binder was load-free. The plane state of stress was examined. The domain
of the computation was bounded ‘by the middle lines of the fibers and the adjacent binder layers on which sym-
metry conditions were imposed, and by the fictitious boundary y =y, with the homogeneous boundary conditions.
An expiicit three-layer difference scheme for the solution of two-dimensional Lamé equations is obtained by a
variational method. The second derivatives were approximated by ordinary central differences at the fiber
and binder internal points {i.e., to the second order), while the difference relationships on the boundaries ap-
proximated the boundary conditions and the condition of rigid contact between the fiber and binder to the first
order., The fiber was covered by a uniform mesh with spacing Ax, where the quantify of points over the half-
thickness, including the boundary, was taken equal to six, The time spacing At =Ax/Va} +a3, where a; and a,
are the respective velocities of the 1ongitudins1 and transverse waves in the fiber. The binder was also covered
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by a uniform mesh, where Ay was taken the same as in the fiber, while Ax could be varied in such a way as
b or ¥ changed as to emplace all the necessary arrays in the operational storage of the electronic computer.
The computation accuracy was checked by halving the difference scheme spacings for small values of the time.

The distribution averaged with respect to the fiber thickness, of the normal stress for the approximate
model (solid lines) and the elastic body (dashes) along the coordinate y ispresented in Fig. 3a~d ¢ =10, 20,
30, 40 is, respectively, the time referred to h/a,) for the same values of the parameters as in Fig. 2. Analogous
graphs are given in Fig. 4 for other values of some of the parameters (a) t =35.4, b=2; b) t =37.5, 1 =2; ¢)
t=60, vy =v, =0). It is seen that the results obtained within the framework of both models are in good qualitative
agreement with each other, even for small values of the time. A certain lead in the maximum peak of the
stress in the elastic medium as compared to the approximate model is explained by a somewhat lowered phase
velocity, which the latter yields for long waves.

For small y the stress is practically stabilized in both cases, starting with a certain time. Here the
approximate model exaggerates their value by 10% approximately, which is close to E,/(E +E,). This is ex-
plained by the fact that the binder in an elastic medium takes on approximately that much of the load. If a
boundary stress is applied even to the binder, then the graphs for small y come together substantially, but
because of the low wave velocity in the binder this change in the boundary conditions does not at all influence
their substantially nonstationary sections.

Therefore, the results obtained confirm the adequacy of the approximate composite model under con~
sideration.

It would be interesting to compare the tangential stresses also on the boundary of the fiber and the binder,
computed according to both methods, however, this cannot unfortunately be done successfully with sufficient
accuracy. The fact is that these stresses are small quantities compared to the boundary load, which are com-~
mensurate with the error of the numerical computation in this case. For a more exact calculation of 7 it is
necessary to diminish the difference scheme spacings substantially, which is extremely complicated because
of the limits to the electronic computer operational storage.

The author is grateful to A. M. Mikhailov and M. V. Stepanenko for useful discussion.
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ASYMPTOTIC ANALYSIS OF LONGITUDINAL
AND BENDING WAVES PROPAGATED IN A SYSTEM
OF TWO PLATES FASTENED AT AN ANGLE

E. V. Mikhailova " UDC 517.9 :624.07—415

1. We introduce two coordinate systems so that in the left plate x; = 0 while in the right x, =0 (Fig. 1).
The z, and z, axes are here directed normally to the plate surfaces so that the twohali-planes (zy =0 for x; =0
and z, =0 for x, =0) would coincide with their neutral planes. The y axis is along the line connecting the plates.
Let an incident sinusoidal wave be propagated in the left plate. We examine the conditions for its passage
through the boundary.

The plate vibrations are described by the following differential equations

D(0%w/ozt 1 204wloz0y? + *wloy®) + phd®wl6i® = 0; .1)
ER am 1—vdu 14y o \ _ , 0%,
1— " ( +3 a2+ 2 dx@y)_ph_az_z’ (1.2)
Bh [1—v o %  1tv d%u 8% -
—_—— |y — T — = | =ph— 1.3
1— vz( 2 a2 ' oyt 2 dzdy ) o’ @.3)

where h is the thickness of the plates; E, elastic modulus; v, Poisson ratio; and D, bending stiffness.

Displacements vy, v, of points of the plate neutral planes along the y axis during vibrations uy, u, along
the x4, X, axes will characterize the wave in the planes of the plates while the displacements w,, w, along the
Z4, Xy axes, respectively, are bending waves [1, 2].

Solutions of the problem should satisfy eight boundary conditions on the hinge-supported edges
w=u == vy = *wloy* = 0 (y = 0, ) 1.4)

and eight juncture conditions on a common edge & =0)

Uy = 1,008 ¢ - wysin @; 1.5)

wy = —uysin ¢ -+ wycos ¢; 1.6)

O /0y == Ow,ylday; ) 1.7

0y, = Oy, COSQ -+ R, sin g; (1.8)
B, = —0,sing+ Ry, cosq; _ 1.9)
My, =M,; 1.10)

Dl = Uy; (1 '11)

(1.12)

Txly = Tx2y1

where ¢ =r—a (¢ is the angle between the plates), Ox; are the normal stresses, 7x;y are the shear stresses,
My, are bending moments relative to the x =0 axis, Qx; + OMx, y/ ay Qx; s the transverse force, Mgy is the
torque), i =1, 2.

2. Let us first consider the particular case of the plane problem (f=«), Then v =0, the solutions are
independent of the variable y and the boundary conditions (1.4) drop out.

The juncture conditions on the common edge have the following form in this case
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